Skip to content
  • Courses
  • Workshops
  • Consulting
  • About
Login
Meerkat Statistics
Meerkat Statistics
  • Courses
  • Workshops
  • Consulting
  • About
Login
Meerkat Statistics
Meerkat Statistics
  • Home
  • Courses
  • WIP
  • Other Materials

Other Materials

Curriculum

  • 10 Sections
  • 60 Lessons
  • Lifetime
Expand all sectionsCollapse all sections
  • Survival Analysis
    9
    • 3.0
      Notes (PDF)
    • 3.1
      Intro to Survival Analysis
    • 3.2
      Simple ML Example
    • 3.3
      Survival function role in Maximum Likelihood
    • 3.4
      Kaplan Meier (KM) & Nelson Aalen (NA)
    • 3.5
      Mean & Restricted Mean vs. Median
    • 3.6
      Cox Proportional Hazard
    • 3.7
      Deriving the Partial Likelihood
    • 3.8
      Breslow Estimator for the Baseline Hazard
  • Expectation Maximization (EM)
    5
    • 4.1
      Notes (PDF)
    • 4.2
      EM Algorithm
    • 4.3
      EM on Binomial Mixture Models
    • 4.4
      EM on Gaussian Mixture Models (GMM)
    • 4.5
      GMM solved by Maximum Likelihood
  • Multiple Hypothesis Testing
    7
    • 5.1
      Notes (PDF)
    • 5.2
      FWER & Bonferroni
    • 5.3
      FDR & Benjamini Hochberg
    • 5.4
      Proof of Benjamini Hochberg
    • 5.5
      Example – Code in R
    • 5.6
      Knockoffs – Original Paper (fixed X)
    • 5.7
      Knockoffs – Construction
  • Computational Statistics
    11
    • 6.0
      Gauss Newton – Non Linear Least Squares
    • 6.1
      Riemann Sum, Rejection Sampling, Importance Sampling – Part 1
    • 6.2
      Riemann Sum, Rejection Sampling, Importance Sampling – Part 2
    • 6.3
      Rejection Sampling – Bounding Constant
    • 6.4
      Rejection Sampling – Proof
    • 6.5
      Sampling Importance Resampling (SIR)
    • 6.6
      Profile Likelihood
    • 6.7
      Profile Likelihood – what is a profile?
    • 6.8
      Profile Likelihood – simpler examples
    • 6.9
      Laplace’s Method
    • 6.10
      Random Sampling – Uniform & Inverse Transform
  • Gaussian Process Regression
    5
    • 7.1
      Notes (PDF)
    • 7.2
      Gaussian Process Regression- part 1 – Kernel First
    • 7.3
      Gaussian Process Regression- part 2 – Prior view
    • 7.4
      Gaussian Process Regression- part 3 – Linear Estimator
    • 7.5
      Gaussian Process Regression- part 4 – Code
  • Other
    5
    • 8.0
      Jacobian
    • 8.1
      Dirac Delta
    • 8.2
      What is probability?
    • 8.3
      Mahalanobis Distance
    • 8.4
      R vs. Python – Coding Differences
  • Factor Analysis
    9
    • 9.0
      Material
    • 9.1
      (Exploratory) Factor Analysis – Introduction
    • 9.2
      (Exploratory) Factor Analysis – Estimation
    • 9.3
      (Exploratory) Factor Analysis – Rotation
    • 9.4
      (Exploratory) Factor Analysis – Code in R
    • 9.5
      Exploratory vs. Confirmatory Factor Analysis
    • 9.6
      (Confirmatory) Factor Analysis – Code in R
    • 9.7
      SEM – Structural Equations Modelling
    • 9.8
      SEM – Code in R
  • Time Series Analysis
    5
    • 10.2
      TSA – Classical Decomposition
    • 10.3
      TSA – Baseline Forecasting
    • 10.4
      TSA – Residuals and Prediction Intervals
    • 10.5
      TSA – Simple Exponential Smoothing – SES
    • 10.6
      TSA – Exponential Smoothing – Trend and/or Seasonality (Holt Winters)
  • Quantile Regression
    3
    • 11.0
      Linear vs. Quantile Regression
    • 11.1
      Quantile Loss
    • 11.2
      Numerical Solutions
  • Clustering
    1
    • 12.0
      Hopkins Statistic
This content is protected, please login and enroll in the course to view this content!
EM Algorithm
Prev
EM on Gaussian Mixture Models (GMM)
Next
  • Courses
  • Workshops
  • Consulting
  • About
  • Contact

Cookie preferences

Terms and Conditions

Copyright © 2025 - Meerkat Statistics