- Home
- Courses
- Complete Course
- Neural Networks with Python
Curriculum
- 11 Sections
- 42 Lessons
- Lifetime
Expand all sectionsCollapse all sections
-
Intro4
-
Comparison to other methods3
-
Expressivity (Capacity)1
-
Training7
- 4.1Backpropagation – Part 1
- 4.2Backpropagation – Part 2
- 4.3Implement a NN in NumPy
- 4.4Notebook – Implementation Redo: Classes instead of Functions (NumPy)
- 4.5Classification – Softmax and Cross Entropy – Theory
- 4.6Classification – Softmax and Cross Entropy – Derivatives
- 4.7Notebook – Implementing Classification (NumPy)
-
Autodiff2
-
Symmetries in weight space2
-
Generalization6
-
Improved Training11
- 8.1Weight initialization – Part 1 – What not to do
- 8.2Notebook – Weight initialization Part 1
- 8.3Weight initialization – Part 2 – What to do
- 8.4Notebook – Weight initialization Part 2
- 8.5Notebook – TensorBoard
- 8.6Learning Rate Decay
- 8.7Notebook – Input Normalization
- 8.8Batch Normalization – Part 1: Theory
- 8.9Batch Normalization – Part 2: Derivatives
- 8.10Notebook – BatchNorm (PyTorch)
- 8.11Notebook – BatchNorm (NumPy)
-
Activation Functions3
-
Optimizers2
-
Auto Encoders1
Intro – Long
Next