Skip to content
  • Courses
  • Workshops
  • Consulting
  • About
Login
Meerkat Statistics
Meerkat Statistics
  • Courses
  • Workshops
  • Consulting
  • About
Login
Meerkat Statistics
Meerkat Statistics
  • Home
  • Courses
  • Complete Course
  • Neural Networks with Python

Neural Networks with Python

Curriculum

  • 11 Sections
  • 42 Lessons
  • Lifetime
Expand all sectionsCollapse all sections
  • Intro
    4
    • 1.1
      Administration
    • 1.2
      Intro – Long
    • 1.3
      Notebook – Intro to Python
    • 1.4
      Notebook – Intro to PyTorch
  • Comparison to other methods
    3
    • 2.0
      Linear Regression vs. Neural Network
    • 2.1
      Logistic Regression vs. Neural Network
    • 2.2
      General Linear Model (GLM) vs. Neural Network
  • Expressivity (Capacity)
    1
    • 3.0
      Hidden Layers: 0 vs. 1 vs. 2
  • Training
    7
    • 4.1
      Backpropagation – Part 1
    • 4.2
      Backpropagation – Part 2
    • 4.3
      Implement a NN in NumPy
    • 4.4
      Notebook – Implementation Redo: Classes instead of Functions (NumPy)
    • 4.5
      Classification – Softmax and Cross Entropy – Theory
    • 4.6
      Classification – Softmax and Cross Entropy – Derivatives
    • 4.7
      Notebook – Implementing Classification (NumPy)
  • Autodiff
    2
    • 5.0
      Automatic Differentiation
    • 5.1
      Backpropagation vs. Forward Propagation (Forward vs. Reverse mode autodiff)
  • Symmetries in weight space
    2
    • 6.0
      Tanh & Permutation Symmetries
    • 6.1
      Notebook – Symmetries: tanh, permutations, ReLU
  • Generalization
    6
    • 7.1
      Generalization and the Bias-Variance Trade-off
    • 7.2
      Generalization Code
    • 7.3
      L2 Regularization / Weight Decay
    • 7.4
      Dropout Regularization
    • 7.5
      Notebook – Dropout implementation (NumPy)
    • 7.6
      Notebook – Early Stopping
  • Improved Training
    11
    • 8.1
      Weight initialization – Part 1 – What not to do
    • 8.2
      Notebook – Weight initialization Part 1
    • 8.3
      Weight initialization – Part 2 – What to do
    • 8.4
      Notebook – Weight initialization Part 2
    • 8.5
      Notebook – TensorBoard
    • 8.6
      Learning Rate Decay
    • 8.7
      Notebook – Input Normalization
    • 8.8
      Batch Normalization – Part 1: Theory
    • 8.9
      Batch Normalization – Part 2: Derivatives
    • 8.10
      Notebook – BatchNorm (PyTorch)
    • 8.11
      Notebook – BatchNorm (NumPy)
  • Activation Functions
    3
    • 9.0
      Classical Activations
    • 9.1
      ReLU Variants
    • 9.2
      A Brief History of ReLU
  • Optimizers
    2
    • 10.0
      SGD Variants: Momentum, NAG, AdaGrad, RMSprop, AdaDelta, Adam, AdaMax, Nadam- Part 1: Theory
    • 10.1
      SGD Variants: Momentum, NAG, AdaGrad, RMSprop, AdaDelta, Adam, AdaMax, Nadam – Part 2: Code
  • Auto Encoders
    1
    • 12.1
      Variational Auto Encoders (VAE)
This content is protected, please login and enroll in the course to view this content!
Weight initialization – Part 2 – What to do
Prev
Notebook – TensorBoard
Next
  • Courses
  • Workshops
  • Consulting
  • About
  • Contact

Cookie preferences

Terms and Conditions

Copyright © 2025 - Meerkat Statistics